

Da Long

837 University Village, Salt Lake City, UT 84108

385-418-7953, u1368737@utah.edu, long-da.github.io

EDUCATION

The University of Utah, Salt Lake City, UT

Ph.D. in Computer Science, GPA: 3.89, Expected: 06/2026, Advisor: Shandian Zhe

The University of Arizona, Tucson, AZ

B.S. in Computer Science, GPA: 4.0, 12/2020

B.S. in Mathematics, GPA: 4.0, 12/2020

WORK

EXPERIENCE

Machine Learning Engineer Intern at DoorDash, Sunnyvale, CA, 05/2025 – 08/2025

- Built and deployed homepage ranking models using transformers, multi-gate mixture-of-experts (MMoE), and semantic representations of merchants and consumers with LLMs to model short- and long-term consumer behaviors for improved personalization and engagement.
- Delivered a substantial lift in gross merchandise value (GMV) and improved order and retention rates, as verified by a 4-week A/B test; architectures were later adopted by other teams.

Research Scientist Intern at Meta, Menlo Park, CA, 05/2024 – 08/2024

- Fine-tuned Meta's generative recommendation model (HSTU) with reinforcement learning algorithms (DQN, A2C) to optimize long-term user satisfaction and engagement.

Student Researcher at Lawrence Berkeley Laboratory, Berkeley, CA, 09/2024 – 12/2024

- Designed a hierarchical spatio-temporal Fourier Transformer for spectral and multi-scale modeling of complex dynamical systems (e.g., climate evolution), followed by a flow matching block for refinement.
- Improved long-horizon stability and accuracy while providing calibrated uncertainty estimates.

Research Assistant at The University of Utah, Salt Lake City, UT, 08/2021 – Present

- Conducted research on probabilistic and generative modeling, developing transformer-, diffusion-, and Gaussian process-based surrogates for complex physical dynamics.
- Developed LLM systems with customized post-training alignment techniques (SFT, DPO), synthetic data generation pipelines, and reward function design for personalized healthcare coaching and recommendations.

SELECTED PROJECTS

LLM-Based Systems for Personalized Healthcare Coaching and Recommendations

- Developed an LLM-based framework for personalized healthcare recommendations and coaching by post-training LLMs on synthetic and curated real-world coaching conversations, using supervised fine-tuning and customized RL algorithms.
- Aligned the model with healthcare coaching guidelines, validated it through expert assessments, and launched a web app to capture user feedback and iteratively improve model behavior.

Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation

- Developed a flexible diffusion model-based framework for multivariate dynamical systems.
- Within a single unified model, the framework was designed to simulate diverse physical processes and address arbitrary conditional tasks.

Physics-Informed Gaussian Process for Surrogate Modeling

- Developed a physics-informed Gaussian process framework that incorporates physics knowledge (PDEs), while quantifying uncertainties for forecasting and interpolation.

SKILLS

Technical: LLM Post-training, Recommendation Algorithms, Reinforcement Learning, Transformers, Gaussian Processes, Diffusion Models

Tools & Frameworks: PyTorch, Hugging Face, DeepSpeed, Ray, Databricks, Snowflake

Programming Languages: Python (Pandas, Scikit-learn, NumPy), JAX, MATLAB

RESEARCH INTERESTS	LLM Alignment, Recommendation Systems, Probabilistic Modeling, Surrogate Modeling, Reinforcement Learning
PUBLICATIONS	<p>* indicates equal contribution.</p> <ul style="list-style-type: none"> • Long D., Xu Z., Yang G., Narayan A., & Zhe S., Arbitrarily-Conditioned Multi-Functional Diffusion for Multi-Physics Emulation. In <i>International Conference on Machine Learning (ICML 2025)</i>. • Xu Z.*, Long D.*, Xu Y., Yang G., Zhe S., & Owhadi H., Toward Efficient Kernel-Based Solvers for Nonlinear PDEs. In <i>International Conference on Machine Learning (ICML 2025)</i>. • Long D., Xu Z., Yuan Q., Yang Y., & Zhe S., Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems. In <i>International Conference on Artificial Intelligence and Statistics (AISTATS 2025)</i>. • Long D., Zhe S., Williams S., Oliker L., & Bai Z., Spatio-temporal Fourier Transformer (StFT) for Long-term Dynamics Prediction. In <i>Transactions on Machine Learning Research (TMLR 2025)</i>. • Chen K., Li Y., Long D., Xu Z., Xing W., Hochhalter J., & Zhe S., Pseudo Physics-Informed Neural Operators. In <i>Transactions on Machine Learning Research (TMLR 2025)</i>. • Long D., Xing W., Krishnapriyan A., Kirby R., Zhe S., & Mahoney M., Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels. In <i>International Conference on Artificial Intelligence and Statistics (AISTATS 2024)</i>. • Fang S.*, Cooley M.* , Long D.*, Li S., Kirby R., & Zhe S., Solving High Frequency and Multi-Scale PDEs with Gaussian Processes. In <i>International Conference on Learning Representations (ICLR 2024)</i>. • Long D., Mrvaljevic N., Zhe S., & Hosseini B., A Kernel Approach for PDE Discovery and Operator Learning. In <i>Physica D: Nonlinear Phenomena</i>. • Long D., Wang Z., Krishnapriyan A., Kirby R., Zhe S., & Mahoney M. (2022). AutoIP: A United Framework to Integrate Physics into Gaussian Processes. In <i>International Conference on Machine Learning (ICML 2022)</i>.